物理・材料

ボイルシャルルの法則★理想気体の基本や計算(熱力学)

ボイル・シャルルの法則

ボイル・シャルルの法則★理想気体の基本(熱力学)

ボイルシャルルの法則とは、体積や温度、圧力の状態が変化するときに成り立つ法則です。

理想気体の状態変化とも言えます。(状態1から状態2に変化するとき↓)

ボイルの法則 一定温度で、一定量の気体の 体積Vは圧力Pに反比例 P₁V₁=P₂V₂=k(一定)

V=k/P、PV=k

シャルルの法則 一定圧力で、一定量の気体の体積Vは絶対温度Tに比例 V=k’T(k’=0℃の体積/273)

V₁/V₂=T₁/T₂

ボイル・シャルルの法則 一定量の気体の体積Vは 圧力Pに反比例し、絶対温度Tに比例 P₁V₁/T₁=P₂V₂/T₂

また熱力学として、ボイルシャルルの法則といっしょに覚えておきたいのが理想気体の状態式、熱量、比熱に関する公式です。

理想気体の状態式 pV=mRT m:気体の質量[kg]、R:ガス定数[J/kgK]
熱量の式 Q=mcΔT m:物体の質量

c:物体の比熱

ΔT:温度変化(変化後の温度-変化前の温度)

定圧比熱Cp

圧力を一定に保って加熱・冷却した場合

Cp-Cv=R(ガス定数)

Cp/Cv=k(比例熱)

定容比熱Cv

容積(体積)を一定に保って加熱・冷却した場合

内部エネルギーΔUの変化とエンタルピー変化ΔH ΔU=mCvΔT

ΔH=mCpΔT

m:気体の質量[kg]

Cv:定容比熱

Cp:定圧比熱

T:温度

ガス定数は気体定数とも言われるよ

とくに理想気体の比熱は、状態変化の方法によって異なるため注意しましょう。

 

ボイルシャルルの法則や理想気体の例題(熱力学)

【例題】

一定体積V=2.0㎥の容器に圧力p₁=0.5MPa、温度t₁=20℃の空気が入っており、圧力をP₂=1MPaにまで上昇させたい。

ただし、空気の定容比熱Cv=0.7kJ/(kg・K)、ガス定数R=287J/(kg・K)とする。このとき、次の問いに答えなさい。

(1)空気の質量mはいくらか。

(2)空気の温度T₂は何【K】になるか。

(3)このとき加えるべき熱量Qはいくらか。

 

【解答】

(1)理想気体の状態式に当てはめると、

p₁V₁=mRT₁

m=p₁V₁/RT₁=(0.5×10⁶×2)/(287×(20+273)

=11.9kg

空気量m=11.9kg

 

(2)ボイル・シャルルの法則から、

P₁V₁/T₁=P₂V₂/T₂

V₁=V₂であるから、

P₁/T₁=P₂/T₂

したがって、

T₂=T₁×P₂/P₁=293×1/0.5

=586K

空気の温度=586K

 

(3)熱量の式Q=mcΔTから、ここでは体積一定条件下であるため、

c=cvとして、

Q=mcvΔT

=mcv(T₂-T₁)

=11.89×0.7×(586-293)

=2438kJ

Q=2438kJ

 

以上です。

このほか、物理や材料などについて解説した記事もありますので、興味のある方はぜひご覧ください。

ありがとうございました。

 

Ad

-物理・材料

© 2023 機械エンジニアのメカニック辞典 Powered by AFFINGER5